121 research outputs found

    It’s all about gains: Risk preferences in problem gambling

    Get PDF
    Problem gambling is a serious socioeconomic problem involving high individual and social costs. In this article, we study risk preferences of problem gamblers including their risk attitudes in the gain and loss domains, their weighting of probabilities, and their degree of loss aversion. Our findings indicate that problem gamblers are systematically more risk taking and less sensitive toward changes in probabilities in the gain domain only. Neither their risk attitudes in the loss domain nor their degree of loss aversion are significantly different from the controls. Additional evidence for a similar degree of sensitivity toward negative outcomes is gained from skin conductance data—a psychophysiological marker for emotional arousal—in a threat-of-shock task

    MLP: a MATLAB toolbox for rapid and reliable auditory threshold estimation

    Get PDF
    In this paper, we present MLP, a MATLAB toolbox enabling auditory thresholds estimation via the adaptive Maximum Likelihood procedure proposed by David Green (1990, 1993). This adaptive procedure is particularly appealing for those psychologists that need to estimate thresholds with a good degree of accuracy and in a short time. Together with a description of the toolbox, the current text provides an introduction to the threshold estimation theory and a theoretical explanation of the maximum likelihood adaptive procedure. MLP comes with a graphical interface and it is provided with several built-in, classic psychoacoustics experiments ready to use at a mouse click

    A critical experimental study of the classical tactile threshold theory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tactile sense is being used in a variety of applications involving tactile human-machine interfaces. In a significant number of publications the classical threshold concept plays a central role in modelling and explaining psychophysical experimental results such as in stochastic resonance (SR) phenomena. In SR, noise enhances detection of sub-threshold stimuli and the phenomenon is explained stating that the required amplitude to exceed the sensory threshold barrier can be reached by adding noise to a sub-threshold stimulus. We designed an experiment to test the validity of the classical vibrotactile threshold. Using a second choice experiment, we show that individuals can order sensorial events below the level known as the classical threshold. If the observer's sensorial system is not activated by stimuli below the threshold, then a second choice could not be above the chance level. Nevertheless, our experimental results are above that chance level contradicting the definition of the classical tactile threshold.</p> <p>Results</p> <p>We performed a three alternative forced choice detection experiment on 6 subjects asking them first and second choices. In each trial, only one of the intervals contained a stimulus and the others contained only noise. According to the classical threshold assumptions, a correct second choice response corresponds to a guess attempt with a statistical frequency of 50%. Results show an average of 67.35% (STD = 1.41%) for the second choice response that is not explained by the classical threshold definition. Additionally, for low stimulus amplitudes, second choice correct detection is above chance level for any detectability level.</p> <p>Conclusions</p> <p>Using a second choice experiment, we show that individuals can order sensorial events below the level known as a classical threshold. If the observer's sensorial system is not activated by stimuli below the threshold, then a second choice could not be above the chance level. Nevertheless, our experimental results are above that chance level. Therefore, if detection exists below the classical threshold level, then the model to explain the SR phenomenon or any other tactile perception phenomena based on the psychophysical classical threshold is not valid. We conclude that a more suitable model of the tactile sensory system is needed.</p

    Global and local perceptual style, field-independence, and central coherence: An attempt at concept validation.

    Get PDF
    Historically, the concepts of field-independence, closure flexibility, and weak central coherence have been used to denote a locally, rather globally, dominated perceptual style. To date, there has been little attempt to clarify the relationship between these constructs, or to examine the convergent validity of the various tasks purported to measure them. To address this, we administered 14 tasks that have been used to study visual perceptual styles to a group of 90 neuro-typical adults. The data were subjected to exploratory factor analysis. We found evidence for the existence of a narrowly defined weak central coherence (field-independence) factor that received loadings from only a few of the tasks used to operationalise this concept. This factor can most aptly be described as representing the ability to dis-embed a simple stimulus from a more complex array. The results suggest that future studies of perceptual styles should include tasks whose theoretical validity is empirically verified, as such validity cannot be established merely on the basis of a priori task analysis. Moreover, the use of multiple indices is required to capture the latent dimensions of perceptual styles reliably

    Understanding Pitch Perception as a Hierarchical Process with Top-Down Modulation

    Get PDF
    Pitch is one of the most important features of natural sounds, underlying the perception of melody in music and prosody in speech. However, the temporal dynamics of pitch processing are still poorly understood. Previous studies suggest that the auditory system uses a wide range of time scales to integrate pitch-related information and that the effective integration time is both task- and stimulus-dependent. None of the existing models of pitch processing can account for such task- and stimulus-dependent variations in processing time scales. This study presents an idealized neurocomputational model, which provides a unified account of the multiple time scales observed in pitch perception. The model is evaluated using a range of perceptual studies, which have not previously been accounted for by a single model, and new results from a neurophysiological experiment. In contrast to other approaches, the current model contains a hierarchy of integration stages and uses feedback to adapt the effective time scales of processing at each stage in response to changes in the input stimulus. The model has features in common with a hierarchical generative process and suggests a key role for efferent connections from central to sub-cortical areas in controlling the temporal dynamics of pitch processing

    Four theorems on the psychometric function

    Get PDF
    In a 2-alternative forced-choice (2AFC) discrimination task, observers choose which of two stimuli has the higher value. The psychometric function for this task gives the probability of a correct response for a given stimulus difference, Δx. This paper proves four theorems about the psychometric function. Assuming the observer applies a transducer and adds noise, Theorem 1 derives a convenient general expression for the psychometric function. Discrimination data are often fitted with a Weibull function. Theorem 2 proves that the Weibull "slope" parameter, β, can be approximated by [Formula: see text], where [Formula: see text] is the β of the Weibull function that fits best to the cumulative noise distribution, and [Formula: see text] depends on the transducer. We derive general expressions for [Formula: see text] and [Formula: see text], from which we derive expressions for specific cases. One case that follows naturally from our general analysis is Pelli's finding that, when [Formula: see text], [Formula: see text]. We also consider two limiting cases. Theorem 3 proves that, as sensitivity improves, 2AFC performance will usually approach that for a linear transducer, whatever the actual transducer; we show that this does not apply at signal levels where the transducer gradient is zero, which explains why it does not apply to contrast detection. Theorem 4 proves that, when the exponent of a power-function transducer approaches zero, 2AFC performance approaches that of a logarithmic transducer. We show that the power-function exponents of 0.4-0.5 fitted to suprathreshold contrast discrimination data are close enough to zero for the fitted psychometric function to be practically indistinguishable from that of a log transducer. Finally, Weibull β reflects the shape of the noise distribution, and we used our results to assess the recent claim that internal noise has higher kurtosis than a Gaussian. Our analysis of β for contrast discrimination suggests that, if internal noise is stimulus-independent, it has lower kurtosis than a Gaussian
    • …
    corecore